Extracranial Oligometastases: A Subset of Metastases Curable With Stereotactic Radiotherapy

Kimberly S. Corbin, Samuel Hellman, and Ralph R. Weichselbaum, University of Chicago Medical Center, Chicago, IL

The term oligometastases, introduced in 1995 and detailed more recently, describes an intermediate state of cancer spread between localized disease and widespread metastases. Metastases from solid tumors are regarded as representative of disseminated cancer and are not considered curable, with the rare exception, such as germ cell tumors. By contrast, evidence has emerged that patients with limited metastatic disease, such as liver metastasis from colon or rectal cancer, can be cured by removal of the metastasis, drawing increased focus on the potential for intermediate states of metastatic cancer involvement. The implication of the concept of an oligometastatic state is that metastatic disease may be cured with metastasis-directed therapy. As a further conceptual refinement, Niibe et al have suggested the concept of oligorecurrence to consider patients with a limited number of metastases and controlled primary tumors as a group with an improved prognosis as compared with patients with limited metastasis and uncontrolled primary tumors. The oligometastatic hypothesis is distinct from other potentially important uses of radiotherapy and surgery in metastatic disease, such as consolidation of chemotherapy responses or as an application of the Norton-Simon hypothesis, which predicts that effectiveness of chemotherapy is proportional to the growth rate of the tumor and that the fastest growth rates occur in nonbulky tumors. Aggressive local therapy to metastatic lesions can downsize tumors, and the remaining cells might therefore be more sensitive to chemotherapy. Our review will focus on extracranial oligometastases because intracranial oligometastasis is an established clinical entity where surgery, radiotherapy, and radiosurgery have defined roles supported by phase III randomized trials and detailed outcome analyses.

Surgery as Treatment for Oligometastases

In 1939, Barney et al reported a case of renal adenocarcinoma metastatic to the lung, treated with pulmonary metastasectomy and nephrectomy. The patient died 23 years later and demonstrated no evidence of tumor recurrence. Published surgical series have reported favorable outcomes for limited metastases to several sites, including the liver, lung, adrenal gland, and brain (Table 1). These reports demonstrate long-term survival, suggesting that a portion of patients with limited metastasis may be cured. Resection of liver metastasis from colorectal cancer has resulted in 5-year survival rates of 25% to 50%, and a large series of more than 1,000 patients has shown 10-year overall survival of 22%. In survivors of resection who lived 10 years, Tomlinson et al demonstrated high disease-specific survival, with only one cancer death among 102 patients, reinforcing the concept that this group was truly cured of cancer. Additional support for long-term survival after local metastasis resection has been noted, with 20-year survival of 17.7% in a series of 350 patients. By contrast, patients with limited metastasis in the liver who did not undergo resection experienced low survival rates. These examples provide strong evidence for a curable subset of patients with limited metastatic disease from colorectal cancer.

Pulmonary metastases make up a common site of metastasis, and resection is established as a therapy. Long-term survivors have been reported for many tumor histologies. The International Registry of Lung Metastases compiled a 5,206-patient cohort of patients with varied primary tumor histology undergoing lung metastasectomy. Ten- and 15-year survival rates were 26% and 22%, respectively, after complete tumor removal, and patients with fewer metastases and longer disease-free interval fared even better.

Although lung and liver resections are the largest and most frequently reported surgical interventions for oligometastasis, more limited series for metastases removal in other organs have also revealed long-term survivors, with select examples listed in Table 1. The most frequently reported tumor histologies in surgical series for oligometastasis are colorectal cancer and sarcoma; however, a clinically limited metastatic state is supported for other histologies. The largest database of surgical resection for pulmonary metastases includes 43% epithelial, 7% germ cell, and 6% melanoma histologies. Additionally, natural history studies have suggested that a proportion of esophageal, lung, breast, and other histologies will present with limited sites of failure.

Biology of Metastases

In 1889, Paget theorized in the seed-and-soil hypothesis that metastasis depended on interaction between the cancer cell and target organ. Successful colonization of a distant site, or metastasis, is a complex interaction between the tumor cells, tumor microenvironment, and host. For a tumor cell to acquire the ability to colonize a distant organ, genetic and epigenetic changes in expression are required to enable the tumor cell to overcome physical boundaries, survive in circulation, evade the immune system, and colonize the distant organ. The tumor microenvironment introduces pressure for selection of the metastatic clone through local changes, such as hypoxia, and the influences of macrophages and other host-specific factors, which upregulate genes implicated in the metastatic cascade. The innate immune...
Table 1. Summary of Surgical Metastasectomy and SBRT for Metastasis Therapy to Multiple Sites

<table>
<thead>
<tr>
<th>Surgical Series</th>
<th>Year</th>
<th>No. of Patients</th>
<th>5-Year Survival (%)</th>
<th>10-Year Survival (%)</th>
<th>Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rees et al (colorectal cancer)</td>
<td>2008</td>
<td>929</td>
<td>36*</td>
<td>23*</td>
<td>Liver</td>
</tr>
<tr>
<td>Fong et al (colorectal cancer)</td>
<td>1999</td>
<td>1,001</td>
<td>37</td>
<td>22</td>
<td>Liver</td>
</tr>
<tr>
<td>Pawlik et al (colorectal cancer)</td>
<td>2005</td>
<td>557</td>
<td>58</td>
<td>No 10-year follow-up</td>
<td>Liver</td>
</tr>
<tr>
<td>Carpio et al (colorectal cancer)</td>
<td>2009</td>
<td>1,369</td>
<td>No 10-year follow-up</td>
<td>Liver</td>
<td></td>
</tr>
<tr>
<td>Limited EHD</td>
<td></td>
<td>1,242</td>
<td>49</td>
<td></td>
<td>Liver and EHD*</td>
</tr>
<tr>
<td>De Haas et al (colorectal cancer)</td>
<td>2008</td>
<td>234</td>
<td>61</td>
<td>43</td>
<td>Liver</td>
</tr>
<tr>
<td>R0 resection</td>
<td></td>
<td>202</td>
<td>57</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Elias et al (colorectal cancer)</td>
<td>1998</td>
<td>269</td>
<td>24.7</td>
<td>No 10-year follow-up</td>
<td>Liver</td>
</tr>
<tr>
<td>Elias et al (noncolorectal only)</td>
<td>1998</td>
<td>147</td>
<td>36</td>
<td>No 10-year follow-up</td>
<td>Liver</td>
</tr>
<tr>
<td>Scheele et al (colorectal cancer)</td>
<td>1995</td>
<td>350</td>
<td>39.3</td>
<td>23.6</td>
<td>Liver</td>
</tr>
<tr>
<td>de Jong et al (colorectal cancer)</td>
<td>2009</td>
<td>1,669</td>
<td>47.3</td>
<td>No 10-year follow-up</td>
<td>Liver</td>
</tr>
<tr>
<td>Pastorino et al (many primary tumors)*</td>
<td>1997</td>
<td>4,572</td>
<td>36</td>
<td>26</td>
<td>Lung</td>
</tr>
<tr>
<td>Choong et al (soft tissue sarcoma)</td>
<td>1995</td>
<td>274</td>
<td>40</td>
<td>No 10-year follow-up</td>
<td>Lung</td>
</tr>
<tr>
<td>Casiraghi et al (many primary tumors)†</td>
<td>2011</td>
<td>575</td>
<td>48</td>
<td>No 10-year follow-up</td>
<td>Lung</td>
</tr>
<tr>
<td>Pfannschmidt et al (colorectal cancer)</td>
<td>2003</td>
<td>167</td>
<td>32.4</td>
<td>10-year follow-up</td>
<td>Lung</td>
</tr>
<tr>
<td>Kanemitsu et al (colorectal cancer)</td>
<td>2003</td>
<td>313</td>
<td>38.3</td>
<td>No 10-year follow-up</td>
<td>Lung</td>
</tr>
<tr>
<td>Petersen et al (melanoma)</td>
<td>2007</td>
<td>249</td>
<td>21</td>
<td></td>
<td>No 10-year follow-up</td>
</tr>
<tr>
<td>Complete resection</td>
<td></td>
<td>69</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saito et al (colorectal cancer)</td>
<td>2002</td>
<td>165</td>
<td>39.6</td>
<td>37.2</td>
<td>Lung</td>
</tr>
<tr>
<td>Kim et al (multiple primary tumors)**</td>
<td>1998</td>
<td>37</td>
<td>24</td>
<td>No 10-year follow-up</td>
<td>Adrenal</td>
</tr>
<tr>
<td>Porte et al (NSCLC)</td>
<td>2001</td>
<td>43</td>
<td>11†</td>
<td>No 10-year follow-up</td>
<td>Adrenal</td>
</tr>
<tr>
<td>Mercier et al (NSCLC)</td>
<td>2005</td>
<td>23</td>
<td>23</td>
<td>No 10-year follow-up</td>
<td>Adrenal</td>
</tr>
<tr>
<td>Burt et al (NSCLC)</td>
<td>1992</td>
<td>185</td>
<td>13</td>
<td>7</td>
<td>Brain</td>
</tr>
<tr>
<td>Bonnette et al (NSCLC)</td>
<td>2001</td>
<td>103</td>
<td>11</td>
<td>No 10-year follow-up</td>
<td>Brain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radiation Series</th>
<th>Year</th>
<th>Patients</th>
<th>Lesions</th>
<th>Local Control (%)</th>
<th>Survival (%)</th>
<th>Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blomgren et al</td>
<td>1995</td>
<td>31</td>
<td>42</td>
<td>80</td>
<td>Not reported</td>
<td>Liver, lung, and retroperitoneum</td>
</tr>
<tr>
<td>Wulf et al</td>
<td>2004</td>
<td>41</td>
<td>51</td>
<td>80</td>
<td>33*</td>
<td>Lung</td>
</tr>
<tr>
<td>Hoyer et al (colorectal cancer)</td>
<td>2006</td>
<td>64</td>
<td>141</td>
<td>86*</td>
<td>38*, 13*</td>
<td>Lung, liver, and adrenal</td>
</tr>
<tr>
<td>Hof et al</td>
<td>2007</td>
<td>61</td>
<td>71</td>
<td>63</td>
<td>47.8*</td>
<td>Lung</td>
</tr>
<tr>
<td>Rusthoven et al</td>
<td>2009</td>
<td>47</td>
<td>63</td>
<td>92*</td>
<td>39*</td>
<td>Liver</td>
</tr>
<tr>
<td>Rusthoven et al</td>
<td>2009</td>
<td>38</td>
<td>63</td>
<td>96*</td>
<td>39*</td>
<td>Lung</td>
</tr>
<tr>
<td>Kang et al (colorectal cancer)</td>
<td>2010</td>
<td>59</td>
<td>78</td>
<td>66*</td>
<td>49*</td>
<td>Multiple</td>
</tr>
<tr>
<td>Okunieff et al</td>
<td>2006</td>
<td>49</td>
<td>125</td>
<td>83*</td>
<td>25*</td>
<td>Lung</td>
</tr>
<tr>
<td>Katz et al</td>
<td>2007</td>
<td>69</td>
<td>174</td>
<td>57*</td>
<td>24*†</td>
<td>Liver</td>
</tr>
<tr>
<td>Lee et al</td>
<td>2009</td>
<td>70</td>
<td>143</td>
<td>71*</td>
<td>47*†</td>
<td>Liver</td>
</tr>
<tr>
<td>Milano et al</td>
<td>2011</td>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td>Multiple*</td>
</tr>
<tr>
<td>Breast cancer</td>
<td></td>
<td>39</td>
<td>87*</td>
<td>74*, 47*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All others</td>
<td></td>
<td>82</td>
<td>65*</td>
<td>39*, 9*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salama et al</td>
<td>2011</td>
<td>61</td>
<td>111</td>
<td>66.7*</td>
<td>56.7*</td>
<td>Multiple</td>
</tr>
<tr>
<td>Bae et al (colorectal cancer)</td>
<td>2012</td>
<td>41</td>
<td>50</td>
<td>64*, 57*</td>
<td>64*, 38*</td>
<td>Lung, liver, and lymph node</td>
</tr>
<tr>
<td>Norisaka et al</td>
<td>2008</td>
<td>34</td>
<td>90*</td>
<td>84.3*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: EHD, extrahepatic disease; NSCLC, non–small-cell lung cancer; SBRT, stereotactic body radiotherapy.

*Cancer-specific survival.
*EHD, including limited involvement of lung, ovary, portal lymph nodes, and other sites.
*Included epithelial, sarcoma, germ cell, melanoma, and other cancers (2%).
*Included epithelial, sarcoma, germ cell, melanoma, and other cancers.
*Included lung, renal, and colorectal cancers.
*4-year rate.
*2-year rate.
*5-year rate.
*3-year rate.
*3-year rate for those treated with curative intent.
*20-month rate.
*Progression-free survival.
*1-year rate.
*18-month rate.
*6-year rate.
*Excluding patients treated with 24 Gy in 8-Gy fractions, 2-year local control was 88.2%.
system may produce an immunosuppressive tumor microenvironment, whereas the adaptive immune system may select for antigen-loss variants and expose tumor cells to cytokines that may select for more-aggressive tumor variants.48

Current concepts regarding the steps involved in the metastatic process have been reviewed recently.49,50 Gupta and Massague51 have framed the genes important to each of the steps of metastasis and characterized these into three categories: initiator genes, progression, and virulence genes. Metastasis-initiator genes provide an advantage to the primary tumor, paving the way for the cells to enter circulation. Metastasis-progression genes fulfill the rate-limiting steps in tumor growth and colonization. The virulence genes provide an advantage to the cells for colonization. The specific steps of metastasis and the metastatic phenotype are beyond the scope of this article; however, the varied nature and selective pressures within a tumor strongly suggest tumors may harbor cells demonstrating a spectrum of metastatic potential. Deficits in any phase of metastasis formation could result in phenotypes of limited metastatic potential.

BIOLOGY OF AN OLIGOMETASTATIC PHENOTYPE

Within the primary tumor, metastatic clones are rare, and the metastatic process is inefficient.52 The appearance of a tumor represents only a proportion of the cancer lifespan, with modeling studies yielding preclinical phases of 5 or more years for many types of cancer53 and, furthermore, suggesting that distant metastasis occurs late in the evolution of genetic change.54 These observations provide a rationale for the development of an oligometastatic phenotype during the natural history of a cancer, and both clinical and preclinical studies provide insights into the phenotype. Tumor models with low metastatic potential have been identified experimentally. Fidler and Kripke55 reported the metastatic ability of different tumor-cell clones derived from B16F1 melanoma lines to colonize the lung. A wide range of colony-forming ability was identified, supporting clonal heterogeneity within the primary tumor. Additional cell lines of varied metastatic potential have been established experimentally.56,57 The large variation within metastatic potential of cell lines is consistent with the concept of oligometastasis. The development of metastasis is also likely hierarchic and, furthermore, suggesting that distant metastasis occurs late in the evolution of genetic change.54 These observations provide a rationale for the development of an oligometastatic phenotype during the natural history of a cancer, and both clinical and preclinical studies provide insights into the phenotype. Tumor models with low metastatic potential have been identified experimentally. Fidler and Kripke55 reported the metastatic ability of different tumor-cell clones derived from B16F1 melanoma lines to colonize the lung. A wide range of colony-forming ability was identified, supporting clonal heterogeneity within the primary tumor. Additional cell lines of varied metastatic potential have been established experimentally.56,57 The large variation within metastatic potential of cell lines is consistent with the concept of oligometastasis. The development of metastasis is also likely hierarchic and evolves over time. Yachida et al54 recently characterized these into three categories: initiator genes, progression, and virulence genes. Metastasis-initiator genes provide an advantage to the primary tumor, paving the way for the cells to enter circulation. Metastasis-progression genes fulfill the rate-limiting steps in tumor growth and colonization. The virulence genes provide an advantage to the cells for colonization. The specifics of steps of metastasis and the metastatic phenotype are beyond the scope of this article; however, the varied nature and selective pressures within a tumor strongly suggest tumors may harbor cells demonstrating a spectrum of metastatic potential. Deficits in any phase of metastasis formation could result in phenotypes of limited metastatic potential.

Within the primary tumor, metastatic clones are rare, and the metastatic process is inefficient.52 The appearance of a tumor represents only a proportion of the cancer lifespan, with modeling studies yielding preclinical phases of 5 or more years for many types of cancer53 and, furthermore, suggesting that distant metastasis occurs late in the evolution of genetic change.54 These observations provide a rationale for the development of an oligometastatic phenotype during the natural history of a cancer, and both clinical and preclinical studies provide insights into the phenotype. Tumor models with low metastatic potential have been identified experimentally. Fidler and Kripke55 reported the metastatic ability of different tumor-cell clones derived from B16F1 melanoma lines to colonize the lung. A wide range of colony-forming ability was identified, supporting clonal heterogeneity within the primary tumor. Additional cell lines of varied metastatic potential have been established experimentally.56,57 The large variation within metastatic potential of cell lines is consistent with the concept of oligometastasis. The development of metastasis is also likely hierarchic and evolves over time. Yachida et al54 recently characterized these into three categories: initiator genes, progression, and virulence genes. Metastasis-initiator genes provide an advantage to the primary tumor, paving the way for the cells to enter circulation. Metastasis-progression genes fulfill the rate-limiting steps in tumor growth and colonization. The virulence genes provide an advantage to the cells for colonization. The specifics of steps of metastasis and the metastatic phenotype are beyond the scope of this article; however, the varied nature and selective pressures within a tumor strongly suggest tumors may harbor cells demonstrating a spectrum of metastatic potential. Deficits in any phase of metastasis formation could result in phenotypes of limited metastatic potential.

CLINICALLY LIMITED METASTASES MAY BE INCREASINGLY IDENTIFIED

The therapeutic outcomes of the surgical treatment of oligometastases suggest that oligometastases exist, but they do not estimate the frequency of occurrence. The incidence has not been well studied, but data suggest that limited metastatic spread is common, especially among certain tumor types. In a review of patients with sarcoma treated at Memorial Sloan-Kettering Cancer Center, Gadd et al61 found that 19% of patients presented with isolated pulmonary metastasis as the first site of failure. A recent series of patients with colorectal cancer found that 46% of those with metastatic disease presented with isolated hepatic metastases, and 38% of these had one or three sites of disease.62 Recent examination of patients with initial stage I to III breast cancer with eventual distant metastases found 16% with oligometastases, with a mean of 1.7 lesions per patient. Asymptomatic patients undergoing imaging evaluations were found to have oligometastases in a higher proportion of cases.63 This example underscores an important principle: Improved and more-specific imaging is likely to change the identification of oligometastases, with limited metastases recognized in increasing frequency. For example, the use of positron emission tomography to evaluate apparent stage I to III lung cancer has enabled the detection of occult metastatic disease in 19%.64 The majority of these patients had disease detected in the adrenal gland, a potential target for metastasis-directed therapy with long-term cure.65 These data hint at the scope of oligometastasis and its increasing importance clinically, particularly in the era of advanced imaging for cancer detection, staging, and surveillance. Importantly, improved imaging techniques also might exclude patients with apparent limited metastases through the detection of additional disease. The potential difficulty in correctly identifying patients with limited disease by imaging suggests the role for molecular classifiers of oligometastasis to be used with clinical and imaging data.

STEREOTACTIC BODY RADIOTHERAPY FOR OLIGOMETASTASES

Stereotactic body radiotherapy (SBRT) enables highly focal treatment of cancer with single or few fractions of high-dose radiation. SBRT has demonstrated favorable rates of local control for primary and metastatic tumors and provides a treatment option for deep-seated tumors or for those who cannot undergo surgery. Advances in radiotherapy planning have advanced the clinical experience with SBRT for limited metastases, with examples listed in Table 1,66-78 including a radiation dose-escalation study from our group.77 SBRT treatment of limited metastases has shown promising local control rates for treated metastases, ranging from 67% to 95%,66,71,72,74,77,80-84 Two- to 3-year survival rates have been reported in the range of 30% to 64%,73,77,78,82 and significantly overlapped with those reported in our original report.59 Wuttig et al60 published an evaluation of pulmonary metastases isolated from patients with clear-cell renal cell cancer and demonstrated differential genetic signatures between samples isolated from patients with few or many metastases. Taken together, these clinical and preclinical examples provide support for the underlying biology of oligometastases.
and chemotherapy. Lee et al99 reported that single ablative dose of radiation (20 Gy) to the tumor induces T-cell–priming in the draining lymphatics. This CD8+/H11001 T-cell response was essential for the antitumor effects associated with a report by Demaria et al100 demonstrating T-cell–dependent antitumoral effects to tumors outside the treatment field after hypofractionated radiation was delivered to a mouse mammary carcinoma.101 These reports suggest that high-dose radiotherapy may induce an immune response, and a new therapeutic strategy may emerge to combine radiotherapy with immunotherapy for oligometastasis to exploit this potential. It is important to note that conventionally fractionated radiotherapy, in addition to high-dose radiotherapy, has been reported to result in an abscopal effect.102,103 The optimal radiation dose–delivery schedule will need to be determined by clinically relevant experimental models and human clinical trials. Because a clinical abscopal effect is unusual with any fractionation scheme when radiotherapy alone is employed, recent reports of an abscopal effect in a patient with melanoma treated with ipilimumab and radiotherapy104 and 12 patients treated with SBRT and high-dose interleukin-2105 have generated much interest, because radiotherapy combined with an appropriate immune modifier may result in systemic responses that will increase the effects of radiotherapy employed to treat oligometastasis.

SHIFT IN PARADIGM

The implications of immune importance and/or potential abscopal effects suggest that standard radiotherapy for metastases, which may reduce immune response, particularly if draining lymphatics or nodal basins are within the target, could have a negative impact on both tumor control and distant effects. SBRT offers the advantage of limited-volume treatment, potentially avoiding immunosuppression. Furthermore, ill-timed systemic therapy99 may have the unintended effect of reduced immune response, potentially limiting the response at both the treated metastasis and subclinical disease targeted by radiation-induced immune response. These areas warrant additional investigation, particularly as applications for SBRT to the oligometastatic setting increase.

In conclusion, oligometastases describe a clinical phenotype of limited metastatic spread, with many published reports of survivors compare favorably with surgical results. In general, SBRT is less invasive than surgery and may be more broadly applicable to greater numbers of tumors in various organs.

Many of the reported experiences are retrospective; however, prospective trials have been initiated to examine the value of locally ablative therapies in the context of limited metastases, with selected examples listed in Table 2.86-91 Some reported prospective studies are promising,71,72,77,84 and more data are anticipated over the next several years. One prospective trial of chemotherapy and surgery for oligometastatic lung cancer was not as promising as some of the retrospective surgical studies; nonetheless, 10% of the patients demonstrated prolonged disease-free survival.92 These results are similar to those of a prospective study of radical local treatment in synchronously identified oligometastases among patients with non–small-cell lung cancer, which showed 14% 3-year progression-free survival.93 SBRT may differ biologically from fractionated radiation therapy (administered in small doses [2 Gy per day]) over 6 to 8 weeks. In addition to the direct cell kill within the high-dose region, vascular and stromal effects also likely contribute to tumor control.94 Experimental models have demonstrated the importance of sphingomyelinase-mediated endothelial apoptosis to tumor control with high-dose radiation therapy,95,96 suggesting that an antiangiogenic effect of high-dose radiotherapy may have a lower threshold of cell death and deprive the tumor of essential nutrients.

Another host factor of potential importance after high single-dose (or few doses) radiotherapy is activation of the innate and adaptive immune responses. Lugade et al97 showed that local irradiation increased the production of tumor peptide–reactive interferon gamma–producing antitumor immune cells and their trafficking to the tumor-draining lymph node tumor tissues. Apetoh et al98 demonstrated the essential role of adaptive immunity in tumor control after local radiotherapy and the importance of the toll-like receptor 4 in the presentation and processing of tumor antigen after both radiotherapy and chemotherapy. Lee et al99 reported that single ablative dose of radiation (20 Gy) to the tumor induces T-cell–priming in the draining lymphatics. This CD8+ T-cell response was essential for the antitumor effects of irradiation and resulted in a reduction in primary tumor and an abscopal effect on distant metastases. These antitumor effects were not observed with conventional fractionated radiotherapy or with chemotherapy. The abscopal effects of high-dose radiotherapy are consistent with a report by Demaria et al100 demonstrating T-cell–dependent antitumoral effects to tumors outside the treatment field after hypofractionated radiation was delivered to a mouse mammary carcinoma.101 These reports suggest that high-dose radiotherapy may induce an immune response, and a new therapeutic strategy may emerge to combine radiotherapy with immunotherapy for oligometastasis to exploit this potential. It is important to note that conventionally fractionated radiotherapy, in addition to high-dose radiotherapy, has been reported to result in an abscopal effect.102,103 The optimal radiation dose–delivery schedule will need to be determined by clinically relevant experimental models and human clinical trials. Because a clinical abscopal effect is unusual with any fractionation scheme when radiotherapy alone is employed, recent reports of an abscopal effect in a patient with melanoma treated with ipilimumab and radiotherapy104 and 12 patients treated with SBRT and high-dose interleukin-2105 have generated much interest, because radiotherapy combined with an appropriate immune modifier may result in systemic responses that will increase the effects of radiotherapy employed to treat oligometastasis.

Table 2. Selected Ongoing Prospective Trials for Oligometastases

<table>
<thead>
<tr>
<th>Trial Name or Number</th>
<th>Design</th>
<th>Eligibility</th>
<th>Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>SABR-COMET</td>
<td>Randomized</td>
<td>All metastatic sites treatable; maximum of three tumors to any single organ system; controlled primary tumor</td>
<td>Standard arm: palliative-scheme radiation; experimental arm: stereotactic ablative radiation</td>
</tr>
<tr>
<td>UPCI 10-028</td>
<td>Phase II</td>
<td>≤5 metastases from solid malignancy</td>
<td>SBRT to affected sites</td>
</tr>
<tr>
<td>UPCI 10-027</td>
<td>Phase II</td>
<td>≤5 metastases diagnosed at initial presentation</td>
<td>SBRT to affected sites in combination with treatment of primary tumor</td>
</tr>
<tr>
<td>NCT01555837</td>
<td>Phase II</td>
<td>Melanoma with ≤5 metastatic sites (not resectable)</td>
<td>Ipilimumab with SBRT to all sites, timed to be delivered before third cycle</td>
</tr>
<tr>
<td>NCT01185639</td>
<td>Phase II</td>
<td>NSCLC with ≤5 metastatic sites, involving lung, liver, adrenal, or spinal lesions; if primary untreated, must have ≤3</td>
<td>SBRT to affected sites, delivered in three or five fractions</td>
</tr>
<tr>
<td>PuMiCC</td>
<td>Randomized</td>
<td>Pulmonary metastases from colorectal cancer</td>
<td>Standard: active monitoring; experimental: active monitoring with pulmonary metastasectomy</td>
</tr>
</tbody>
</table>

Abbreviations: NSCLC, non–small-cell lung cancer; PuMiCC, Pulmonary Metastasectomy in Colorectal Cancer; SABR-COMET, Stereotactic Ablative Radiotherapy for Comprehensive Treatment of Oligometastatic Tumors; SBRT, stereotactic body radiotherapy; UPCI, University of Pittsburgh Cancer Institute.
with aggressive metastasis-directed therapy. As the biology of metastases is increasingly understood, there is increasing support for the underlying biology of oligometastases. Improved imaging and molecular analysis of tumor are likely to increase and more accurately identify the number of patients with limited metastases, thereby allowing better selection for locally ablative therapies. Furthermore, prospective trials may provide more clinical guidance for proper selection of patients for whom locally ablative therapies are appropriate. Ultimately, a randomized trial of ablative radiotherapy and/or surgery compared with the standard of care may be necessary to define the role of ablative modalities in oligometastases. On the basis of these diagnostic and therapeutic advances in the identification and treatment of oligometastases, as well as the beginning of an understanding of the biologic mechanisms and markers for the clinical state, we believe that there will be a major salutary, curative, regional treatment approach to cancer care.

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
Although all authors completed the disclosure declaration, the following author(s) and/or an author’s immediate family member(s) indicated a financial or other interest that is relevant to the subject matter under consideration in this article. Certain relationships marked with a “U” are those for which no compensation was received; those relationships marked with a “C” were compensated. For a detailed description of the disclosure categories, or for more information about ASCO’s conflict of interest policy, please refer to the Author Disclosure Declaration and the Disclosures of Potential Conflicts of Interest section in Information for Contributors.

Employment or Leadership Position: None Consultant or Advisory Role: Ralph W. Weichselbaum, Reflexion (U) Stock Ownership: Ralph W. Weichselbaum, Reflexion Honoraria: None Research Funding: None Expert Testimony: None Other Remuneration: None

AUTHOR CONTRIBUTIONS
Manuscript writing: All authors
Final approval of manuscript: All authors

REFERENCES
85. PuMCC. http://www.rbht.nhs.uk/PuMCC/

DOI: 10.1200/JCO.2012.45.9651; published online ahead of print at www.jco.org on March 4, 2013

2013 ASCO Annual Meeting

Each year, ASCO organizes a wide array of high-quality meetings that provide educational and scientific programs to advance our understanding of cancer. At each of ASCO’s meetings, you can expect an engaging and interactive agenda featuring high-level scientific or clinical abstracts and educational sessions led by world-class faculty. Join us to earn CME credit, network with colleagues, and interact with cancer experts.

Join more than 25,000 oncology professionals from a wide range of specialties at the world’s premier oncology event, May 31-June 4, 2013, in Chicago, Illinois.